
Journal of Mathematical Chemistry 25 (1999) 85–92 85

Another way to implement the Powell formula for
updating Hessian matrices related to transition structures

Josep Maria Anglada a, Emili Besalú b, Josep Maria Bofill c and Jaime Rubio d

a C.I.D.-C.S.I.C., Jordi Girona Salgado 18-26, E-08034 Barcelona, Catalunya, Spain
E-mail: anglada@qteorl.cid.csic.es

b Institut de Quı́mica Computacional, Universitat de Girona, Campus de Montilivi, E-17071 Girona,
Catalunya, Spain

E-mail: emili@stark.udg.es
c Departament de Quı́mica Orgànica, Universitat de Barcelona, Martı́ i Franquès 1,

E-08028 Barcelona, Catalunya, Spain
E-mail: jmbofill@canigo.qo.ub.es

d Departament de Quı́mica Fı́sica, Universitat de Barcelona, Martı́ i Franquès 1, E-08028 Barcelona,
Catalunya, Spain

E-mail: jaime@hal6001.qf.ub.es

Received 27 July 1998

A way to update the Hessian matrix according to the Powell formula is given. With this
formula one does not need to store the full Hessian matrix at any iteration. A method to
find transition structures, which is a combination of the quasi-Newton–Raphson augmented
Hessian algorithm with the proposed Powell update scheme, is also given. The diagonaliza-
tion of the augmented Hessian matrix is carried out by Lanczos-like methods. In this way,
during all the optimization process, one avoids to store full matrices.

1. Introduction

The optimization of the geometrical parameters based on the location of station-
ary points on a potential energy function is important in the prediction of molecular
structures. The potential energy functions are non-linear and continuously differen-
tiable. An optimization algorithm is efficient when it presents a fast convergence using
small memory. Newton and quasi-Newton–Raphson methods are attractive since they
are rapidly convergent to a local stationary point. An important point in this type of
algorithms is the required storage needs. For an optimization problem of n variables,
the storage of the Hessian (analytic or approximated) is O(n2) memory locations and
the solution of the Newton equation O(n3) additions and multiplications [26].

For the popular update Hessian formulae, namely Davidon–Fletcher–Powell
(DFP) and Broyden–Fletcher–Goldfarg–Shano (BFGS) [15], there already exist ex-
pressions which avoid storing the full Hessian matrix [8,9,14,16,21,22]. However,
these updates are only efficient to optimize the minimum but for saddle points (transi-

 J.C. Baltzer AG, Science Publishers

86 J.M. Anglada et al. / Powell formula for updating Hessian matrices

tion states) they are not the best updates [2,7]. For the optimization of saddle points
it has been proposed to use the Powell, Murtagh–Sargent–Powell (MSP) and related
formulae to update the Hessian matrix at each iteration [5–7,15,24,27] and has been
demonstrated that they are very successful for this type of problems [7]. In this paper
we present two ways to update the Hessian matrix according to the Powell expres-
sion [15,24]. Using one of these formulae, one only needs to store two vectors of
length n at each iteration. Employing the other formula only small matrices of di-
mension (2k)2 are needed to store, where k is the current number of iterations of the
quasi-Newton–Raphson procedure. We hope that these expressions will be efficient to
locate saddle points with limited memory.

2. The Powell representation formula

The most general rank-two update Hessian matrix formula is [11]

Bi+1 = Bi + Ei = Bi + jiuT
i + uijT

i −
(
dT
i ji
)
uiuT

i

= Bi + [ji ui]

[
0 1

1 −
(
dT
i ji
)] [ji ui]T, i = 0, 1, . . . , (1)

where Bi is the approximated Hessian matrix at the iteration i and the vectors ji = yi−
Bidi and ui = Midi/(dT

i Midi). The Mi represents a symmetric and positive-definite
matrix [7,17]. Finally, the correction vectors are yi = gi+1 − gi and di = xi+1 − xi.
The vectors gi and xi are the gradient and the current approximation to the solution
at the iteration i, respectively. We remember that, in Powell’s update formula, the set
of matrices M0 = M1 = · · · = Mi = Mi+1 = · · · = I, where I is the unit matrix;
consequently, ui = di/(dT

i di).

2.1. The direct representation of Powell’s update formula (DRP)

Expression (1) should we written in a compact way as

Bk+1 = B0 +
k∑
i=0

Ei = B0 +
k∑
i=0

[
jiuT

i + uijT
i −

(
dT
i ji
)
uiuT

i

]
, k = 0, 1, (2)

This formula takes explicitly the information of all previous iterations. To evaluate
the vector ji one needs to compute the vector Bidi and this is carried out using the
following formula:

Bidi = B0di +
i−1∑
l=0

[
jlu

T
l di + ul

(
jT
l di − dT

l jlu
T
l di
)]

, i = 1, . . . , k. (3)

In a normal quasi-Newton–Raphson iteration k, the matrix Bk+1 is updated by the
matrix B0 and the set of the pair vectors {ji, ui}ki=0 and the set of scalars {dT

i ji}ki=0.

J.M. Anglada et al. / Powell formula for updating Hessian matrices 87

However, as it will be seen below, since we are interested in limited memory problems,
the more important is the computation of the vector Bk+1v, for some n-dimensional
v vector. This vector is evaluated using a similar expression to the one given in
equation (3) replacing the di vector by the v vector, that is,

Bk+1v = B0v +
k∑
i=0

[
jiuT

i v + ui
(
jT
i v− jT

i diuT
i v
)]

, k = 0, 1, (4)

The algorithm for evaluating the vector Bkdk is:

1. Compute B0dk and store it in a temporal vector, say b. Using the pair of vectors
{ji, ui}

k−1
i=0 and the scalars {dT

i ji}
k−1
i=0 do:

Loop from i = 0 to k − 1.

2. Compute the scalar products uT
i dk and jT

i dk.

3. Compute b← b + jiuT
i dk + ui(jT

i dk − jT
i diuT

i dk).

End of loop.

A similar algorithm is needed to compute the Bk+1v vector. The computation
of this vector requires about 4kn multiplications. Note that the DRP formula at each
iteration stores two vectors of length n; consequently, if B0 is selected to be diagonal,
then at the iteration k the amount of memory needed using this formula is 2nk + n.
Finally, we note that if the Mk matrix is taken as Mk = akBk+1 + bkBk for some
selected scalars ak and bk and it is substituted in equation (1), using straightforward
algebra one gets the BFGS formula [2]. With this consideration, the previous algorithm
is transformed to the one proposed by Mahidhara and Lasdon [22] for the direct
representation of the BFGS update formula.

2.2. The compact representation of Powell’s update formula (CRP)

We define the set of matrices

Rk = [r0, . . . , rk−1] = Yk − B0Dk = [y0, . . . , yk−1]− B0[d0, . . . , dk−1], (5)

where ri = yi − B0di and the matrix

Uk = [u0, . . . , uk−1]. (6)

With the above definitions, the approximated Hessian matrix Bk is given by

Bk = B0 + [Rk Uk]

[
Ok NT

k

Nk −Pk

][
RT
k

UT
k

]
, k = 1, . . . , (7)

where the matrices Ok, Nk and Pk are defined and updated in the following way:
O1 = 0,

Ok =

[
Ok−1 0k−1

0T
k−1 0

]
,

(8)

88 J.M. Anglada et al. / Powell formula for updating Hessian matrices

where 0k is the k-dimensional zeroth vector,
N1 = 1,

Nk =

[
Nk−1 0k−1

−pT
k−1Nk−1 1

]
,

(9)

where the vector pk = UT
kdk, and, finally,

P1 = dT
0 r0,

Pk =

[
Pk−1 Nk−1nk−1 − Pk−1pk−1

nT
k−1NT

k−1 − pT
k−1PT

k−1 pk−1

]
,

(10)

where the vector nk = RT
kdk. The scalar pk is defined as

pk = dT
krk −

[
nT
k pT

k

] [Ok NT
k

Nk −Pk

][
nk
pk

]
. (11)

The proof of equation (7) will be done by induction. For k = 1, equation (7)
gives equation (1) for i = 0. Let us assume that equation (7) is true for some k. Then,
we substitute equation (7) into equation (1) for i = k, and after some manipulation we
get

Bk+1 = B0 + [Rk Uk]

[
Ok NT

k

Nk −Pk

][
RT
k

UT
k

]

+

(
yk − B0dk − [Rk Uk]

[
Ok NT

k

Nk −Pk

][
RT
k

UT
k

]
dk

)
uT
k

+ uk

(
yk − B0dk − [Rk Uk]

[
Ok NT

k

Nk −Pk

][
RT
k

UT
k

]
dk

)T

−
(

dT
kyk − dT

kB0dk − dT
k[Rk Uk]

[
Ok NT

k

Nk −Pk

][
RT
k

UT
k

]
dk

)
ukuT

k . (12)

Now, making some rearrangements in equation (12) and using relationships (5) and
(6), we obtain

Bk+1 = B0 + [Rk rk Uk uk]

×


Ok 0k NT

k −NT
kpk

0T
k 0 0T

k 1

Nk 0k −Pk −(Nknk − Pkpk)

−pT
kNk 1 −(Nknk − Pkpk)T −pk




RT
k

rT
k

UT
k

uT
k


= B0 + [Rk+1 Uk+1]

[
Ok+1 NT

k+1

Nk+1 −Pk+1

][
RT
k+1

Uk+1

]
, (13)

J.M. Anglada et al. / Powell formula for updating Hessian matrices 89

which proves relations (7)–(11) for all k. As in DRP, the computation of the vector
Bkv using equation (7) needs about 4kn multiplications. A similar equation for the
BFGS formula has been proposed by Byrd et al. [9]. Note that using the DRP formula
one only needs to store vectors of length n and small matrices of dimension (2k)2,
where k is the current number of iterations.

3. A saddle point search algorithm with limited memory

Rather than to compute the quasi-Newton–Raphson step in the standard way,
we compute an approximation to it by the so-called Augmented Hessian (AH) pro-
cedure [3]. The AH technique is based on a rational function approximation to the
Newton–Raphson quadratic model [1,3,19]. It has the advantage that it introduces
some type of restricted step converting the algorithm into a quite powerful method [1].
To locate and optimize a transition state with the AH at any iteration, say k, one should
diagonalize up to the second eigenpair the following secular equation [1,3,19]:

Ba
kv(k)
ν =

[
0 gT

k

gk Bk

]
v(k)
ν =

[
0 gT

k

gk Bk

](
v(k)

1,ν

v′(k)
ν

)
= λ(k)

ν v(k)
ν ∀ν = 1, . . . ,n+ 1, (14)

where (v′(k)
ν)T = (v(k)

2,ν , . . . , v(k)
n+1,ν) and the correction vector is given by

dk =
1

v(k)
1,2

v′(k)
2 . (15)

Since we never store the full matrix, the two first eigenpairs of equation (14) are
obtained by a Lanczos-type method [25] like the one proposed by Davidson [10]. On
the basis of these ideas, a sketch of the algorithm is:

1. Give B0, and the vectors {ji, ui}k−1
i=0 and the scalars {dT

i ji}k−1
i=0 (option DRP) or

the matrices Rk, Uk, Ok, Nk and Pk (option CRP). It is assumed that B0 is not
complete, but it possesses the necessary correct structure in order to locate the
desired transition structure.

2. Obtain the first two eigenpairs of the eigenvalue equation (14) by a Lanczos-type
algorithm. At each Lanczos-type iteration, the vector Bkv(k)

ν (ν = 1 or 2) is
evaluated by using the algorithm described in section 2.1 (option DRP) or using
equation (7) (option CRP).

3. Using equation (15) compute dk and the new xk+1, energy E(xk+1) and gradient
gk+1. Test for convergence: if ‖gk+1‖ < ε, stop (‖ · ‖ defines the Euclidean norm).

4. If option DRP is used, then compute the vectors uk and Bkdk, the latter using the
algorithm described in section 2.1, and from this the vector jk and the scalar dT

kjk
and store it. If option CRP is used, then update the matrices Rk → Rk+1, Uk →
Uk+1, Ok → Ok+1, Nk → Nk+1 and Pk → Pk+1 using the relationships (5), (6),
(8), (9) and (10), respectively.

90 J.M. Anglada et al. / Powell formula for updating Hessian matrices

4. Comparative performance of Powell’s formulae

The transition structure optimizations were carried out with the AM1 [12] semi-
empirical Hamiltonian implemented in the program package MOPAC [23]. The ap-
propriate wavefunction (i.e., RHF or UHF) was taken in each case. Since both DRP
or CRP need the same number of operations to compute the Bkv vector, the present
calculations were carried out employing the DRP option. The guess B0 matrix has the
following structure:

where the large diagonal part is stored in a vector and the main part related to the
desired transition vector and non-positive-defined, the so-called active part [13], is
stored in a small matrix. In scheme 1 we propose three reactions whose transition

Scheme 1.

J.M. Anglada et al. / Powell formula for updating Hessian matrices 91

Table 1
Comparative performance between the DRP algorithm and the standard algo-

rithm to optimize transition structures.

Reactiona nvb ‖g0‖c DRPd Standard methodd,e

1 42 0.4 4 4
2 57 0.4 11 2
3 92 3.9 14 (48)f 8

a See scheme 1.
b Number of variables in internal coordinates (bond distances, bond angles and

dihedrals).
c Initial gradient norm in internal coordinates defined as ‖g0‖ = (gTg/nv)1/2.

The units are kcal/(mol Å) for bond distances and kcal/(mol rad) for bond
angles and dihedrals.

d Total number of iterations to reach the convergence. The convergence cri-
teria are ‖g‖ 6 0.1, maxi |(g)i| 6 5.0, ‖d‖ = (dTd/nv)1/2 6 0.008,
maxi |(d)i| 6 0.04.

e In the standard method the full matrix B is stored and the optimization is
carried out according to the algorithm described in [5].

f The number of iterations needed to achieve the convergence using a different
B0 guess matrix are given in parenthesis. See text for more details.

states have been optimized using the above algorithm. In table 1 we show the num-
ber of iterations used in each case. Reactions 1 [20] and 2 [18] are intramolec-
ular rearrangements. The thermochemistry of reaction 1 was studied recently by
Lay et al. [20] at AM1 level. For reaction 1, the active part of the guess B0 ma-
trix contains only the elements related to the parameters of the bond breaking/bond
formation –O· · ·H· · ·O– process. On the other hand, for reaction 2, the active part
of the B0 matrix is defined with the geometrical parameters Cl–C, C–C–Cl and
C–C–C bond angle of the cyclopropane ring. The third example consists in the
location of the cis transition state for the reaction of the protonated nicotinamide
with 1,4-dihydronicotinamide studied at AM1 level by Bodor et al. [4] and by Wu
et al. [28] at ab initio level. Despite that this reaction occurs through C2 sym-
metry, it was studied within C1 symmetry. Using this symmetry point group the
system has 92 geometrical variables. The active part of the B0 matrix is defined
by the geometrical parameters corresponding to the bond breaking/bond formation
–C· · ·H· · ·C– process. According to the results presented in table 1, the degrada-
tion of the method, with respect to the standard method of [5] with full B matrix,
increases with the number of variables. However, if in example 3 the active part
of the initial B0 is redefined in such a way that it takes into account the interaction
between –C· · ·H· · ·C– and the two C=O bonds, then the number of iterations de-
creases to 14. This interaction in this transition state is very important as discussed
by Wu et al. [28]. This result reveals that the active part of the B0 matrix should be
accurately selected in order to obtain a good convergence using the proposed algo-
rithm.

92 J.M. Anglada et al. / Powell formula for updating Hessian matrices

5. Conclusion

We have presented a method to optimize transition structures with limited mem-
ory. The method is based on a reformulation of the Powell update formula [15,24].
Coupling this formula with the AH method diagonalized by the Lanczos-type algo-
rithm, one does not need to store any full matrix. The only drawback of the proposed
algorithm is in the correct selection of the active part of the initial guess for the
approximated Hessian matrix.

Acknowledgements

We are indebted to Professor S. Olivella for they valuable suggestions. This
research was supported by the Spanish DGICYT (Grant PB95-0278-C02-01).

References

[1] J.M. Anglada and J.M. Bofill, Int. J. Quantum Chem. 62 (1997) 153.
[2] J.M. Anglada and J.M. Bofill, J. Comput. Chem. 19 (1998) 349.
[3] A. Banerjee, N. Adams, J. Simons and R. Shepard, J. Phys. Chem. 89 (1985) 52.
[4] N. Bodor, M.E. Brewster and J.J. Kaminski, J. Mol. Struc. (Theochem) 206 (1990) 315.
[5] J.M. Bofill, J. Comput. Chem. 15 (1994) 1.
[6] J.M. Bofill, Chem. Phys. Lett. 260 (1996) 359.
[7] J.M. Bofill and M. Comajuan, J. Comput. Chem. 16 (1995) 1326.
[8] A. Buckley and A. LeNir, Math. Programming 27 (1983) 103.
[9] R.H. Byrd, J. Nocedal and R.B. Schnabel, Representations of quasi-Newton matrices and their use

in limited memory methods, Technical report NAM-03, Northwestern University (1996).
[10] E.R. Davidson, J. Comp. Phys. 17 (1975) 87.
[11] J.E. Dennis, Jr. and J.J. Moré, SIAM Rev. 19 (1977) 46.
[12] M.J.S. Dewar, E.G. Zoebisch, E.F. Healy and J.J.P. Stewart, J. Am. Chem. Soc. 107 (1985) 3902.
[13] W. Diaz, J.M. Aullo, M. Paulino and O. Tapia, Chem. Phys. 204 (1996) 195.
[14] T.H. Fischer and J. Almlöf, J. Phys. Chem. 96 (1992) 9768.
[15] R. Fletcher, Practical Methods of Optimization (Wiley, New York, 1987).
[16] J.C. Gilbert and C. Lemaréchal, Math. Programming 45 (1989) 407.
[17] J. Greenstadt, Math. Comp. 24 (1970) 1.
[18] N.S. Isaacs, Physical Organic Chemistry (Longman Scientific, New York, 1987) p. 613.
[19] Yu.G. Khait, A.I. Panin and A.S. Averyanov, Int. J. Quantum Chem. 54 (1995) 329.
[20] T.H. Lay, J.W. Bozzelli and J.H. Seinfeld, J. Phys. Chem. 100 (1996) 6543.
[21] D.C. Liu and J. Nocedal, Math. Programming 45 (1989) 503.
[22] D.Q. Mahidhara and L. Lasdon, A SQP algorithm for large sparse nonlinear programs, Technical

report, MSIS Department, University of Texas, Austin, TX (1990).
[23] MOPAC program, local version.
[24] M.J.D. Powell, Math. Programming 1 (1971) 26.
[25] Y. Saad, Numerical Methods for Large Eigenvalue Problems (Manchester University Press, Halsted

Press, Wiley, 1992).
[26] T. Schlick and M. Overton, J. Comput. Chem. 8 (1987) 1025.
[27] S. Simons, P. Jorgensen, H. Taylor and J. Ozment, J. Phys. Chem. 87 (1983) 2745.
[28] Y.-D. Wu, D.K.W. Lai and K.N. Houk, J. Am. Chem. Soc. 117 (1995) 4100.

